
Best
Available

Copy

.,

■ ■■■" —-—■ -

AD-782 65S

AN ENCIPHERING MODULE FOR MULTICS

Ü. Gordon Benedict

Massachusetts Institute of Technology

Prepared for:

Office of Naval Research
Advanced Research Projects Agency

July 1974

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF CüMMERCE
5285 Port Royal Road, Springfield Va. 22151

-"- "

1

MAC TECHNICAL MEMORANDUM 50

AN ENCIPHERING MODULE FOR MULTICS

G. Gordon Benedict

July. 1974

This research was performed in the Computer Systems Research
Division of Project MAC, an M.I.r. Interdepartmental Laboratory
and was sponsored in part by the Advanced Researcn Projects
Agency (ARPA) of the Department of Defense under ARPA Order
No. 2095 which was monitored by Office of Naval Research
Contract No. NOOOU-70-A-0362-0006; in part by the Air Force
Information Systems Technology Applications Office and by ARPA
under ARPA Order No. 2641; and in part by Honeywell Information
Systems, Inc.

This Technical Memorandum reproduces a June. 1974, M I.T
Electrical Engineering Department S. B. Thesis of'the sai

Thi
Ele
title.

same

J

 »11 —-

An Lnciphcring .Module for Multic pnne 2

ABSTRACT

Recently IDM Corporation h.is declassified an alnorithn

for encryption usable for computer-to-connuter or

conputer-to-terminal conmunications. Thoir alqorithn wa>

inpleinented in a hardware device called Lucifer. A software

inplonentation of Lucifer for Flultics is described. A proof

of the aloorithn's reversibility for decipherinq is

provided. A special hand-coded (assenblv lanquaqf.-) version

of Lucifer is described whose qoal is to attain perrornance

as close as possible to that of the hardware device.

Performance measurenonts of this proqran are qiven.

Questions addressed are: How complex is it to implement an

aiaorithm in software desiqned primarily for digital

hardware? Can such ■ proqram perform well enouoli for use in

the I/O system of a larqe tine-sharinq svsten?

Author: 6« Gordon Benedict

Thesis Supervisor: Prof. Jerome H. Saltzer

^.^^HMM^ . .

An Lncipheriny Module for Multics paae 3

CONTENTS

Title Page

Abstract

Contents

Fiyuros

Tables

Oveiview

Section 1, Introduction to Enciphering

Section 2, Enciphering Algorithms and Lucifer

in Particular

Section 3, A Proof of Lucifer's Reversibility

Section 4, The Multics Software Implementation

Section 5, Timing Measurements and Conclusions

Appendix A, Operation of the Lucifer Hardware

Appendix B, The PL/I Implementation

Apper.dix C, The Assembly Language Implementation

Appendix D, Introduction to Multics Assembler

Bibliography

1

2

3

4

6

3

12

17

19

22

24

34

43

62

68

MMMMH II i IIIMll«

■■ m^w t wm in

An Lnciphering Module for Multics paqe 4

FIGURES

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Flowchart 15

Block Diagram 15

Bit Addresses in Reqisters 25

Hardware Schematic 26

exploded Key B;.t Assignment 44

Key Bit Assignment 45

Convolution Registers 47

Postrotation Convolution Registers 4 8

mam ■M
.

mi—Ml i———■! . J

r mwwrm^ »—' ■ •mwn m ■ ■•-WMI^MBW»»— I ■■m mi i in ■mmpn^m^rv^^—~

An Enciphering ftodule for Multics paqo 5

TABLES

Table 1, Key Byte Access Schedule 31

Table 2, Four-bit Permutations 3 3

Table 3, Convolution Register Rotation Counts 51

An Lncipherinq Module for Multics naqe C

OVERVIEW

\

This thesis examines the encipherinq alcorithm recently

released by IBM, Lucifer. This alqorithm is described as a

hardware mechanism in "The Desiqn of Lucifer, a

Cryptographic Device for Data Communications*', by J. Lynn

Smith; this was the primary source document.

A proof of Lucifer's reversibility is given, that it

will in fact correctly decipher its previously-output

ciphertext when provided with the same key used for

enciphering. Two software implementations are described and

their performance measured.

This paper is divided into five sections and four

appendices. "Introduction to Enciphering" briefly explains

the uses of enciphering in computer-to-computer and

computer-to-terminal communication as a security

enhancement. "Enciphering Algorithms anu Lucifer in

Particular" lists some criteria for a good computer-oriented

cipher. The general operation of Lucifer is depicted

without much detail. Sufficient detail is however given for

, understanding of "A Simple Proof of Lucifer's

\Reversibility". This section provides an informal proof

Vliat Lucifer works in that it correctly deciphers its own

ciphertext. "The Multics Software Implerne"Laiion"

demonstrates how to use the enciphering pr'»qr^r.rf. The final

section, "Timing and Conclusions", presents performance

■I mmamtmmti^^»^.

An Enciphering Module for Multics page 7

measurements of a PL/I ar.-i a Multics assembly language

version of Lucifer. Appendix A, "Operation of the Lucifer

Hardware", details the operation of the hardware device

described by Smith. Appendix B, "The PL/I Implementation",

derails a software version in the PL/I language designed to

simulate closely the Lucifer hardware in its operation and

be readable and exportable. Appendix (,, "The Assembly

Language Implementation", details a version of Lucifer

optimized for execution time. For those readers unfamiliar

with the Multics hardware, "An 1 Production to Multics

Assembler" briefly explains those features of the Honeywell

model 6180 processor used by Lucifer.

MMMi —___»_-_

mmm^^m*^m^m~mm^mmm

An Encipherimj Module for Multics paqe 0

1NTP0DUCTION TO ENCIPULRINC

Much attention has been paid recently to copnuti»r and

data security. Computer security consists of rcqul^ting the

use of computer facilities to only those people or those

tasks authorized to use them. This has been attempted by

such mechanisms as passwords, protection rings, and

privileged instructions. Data security is becoming more

important with th'i advent of government and corporate

personal-data files. This problem is magnified if the

computer system is available to many users via

telecommunications. Given the above facilities for

regulating computer facility use, access contron. is one

mechanism that is available for preventing unauthorized

access to data files. However, this mechanism fails when

data is transmitted over telephone lines, radio links, or

physical (mail or courier) shipments. Such cominunications

are easily tapped without the legitimite user's knowledge,

except for the case of a courier. Even more insidious than

the traditional reading of sensitive data is the insertion

of spurious data designed to confuse or misdirect the

operation of a system. One mechanism for minimizing this

problem is enciphering that data, which protects the data

itself rather than the medium of transmitting the data.

Enciphering is a process whereby transformations are

made on the message (cleartext), usually on a bit or

MUMMMIM - .^MBM

1
An Enciphering Module for iMultics page 9

character level. if the algorithm is known the cipher may

be breakable by analyzing the ciphertext, particularly if

sample cleartext for some of the ciphertext is available.

Since an enciphering algorithm must be reversible to be

useful, a key known by both the message oriqinacor and the

intended receiver is also used. Thus if the key is

intercepted or deduced the cipher is now cracked. The

essence of successful cryptology is in devisinq an

enciphering algorithm which is not possible to crack in the

time-span of the messaqe's useful less, and in keepinq the

key secret.

Enciphering helps in preventing insertion of spurious

adta to confuse a computer, as well as preventiny reading of

secret data. This is because a random message inserted onto

the communication link will probably decipher to

unrecognizable yarbage. The algorithm implemented in this

paper is so constructed that if one bit is changed in a

legitimate enciphered message, the deciphered text will

almost certainly be unrecoqnizable. Thin prevents the form

of interference wherein a saboteur records (taps) the

ciphertext, changes some bits randomly without even

understanding the message, and inserts the text onto the

telephone lines. Unrecognizable text can usuall" be

rejected by the computer. There still remains the problem

of the saboteur who records the ciphertext and replays it

unchanged later. This can be extremelv damaqino to

^MMMM J

An Enciphering Module for Multica pane 10

unrepeatable or irreversible processes. A method of

avoiding this problem is message chaining, whereby a part of

the previous data exchange is enciphered in this data

exchange, as a verification field. Thus the same message

replayed tomorrow would contain an out-of-o.jte VwrifiCAtlei

field and be rejected. The operation of such a syntem is

discussed at length in Smith's paper.

Enciphering can also be used for computor-to-terminal

corimunications. The terminal would contain a hardware

deciphering module; the algorithm described here was

designed with this purpose in mind. The user could have his

key on a magnetic card, or he could type it in on the

terminal. The computer would contain a central file of all

users' keys and a software or hardware version of the

enciphering module.

Enciphering can add some security to online files

against the possibility of random hardware or software

failures or physical stealing of backup tapes, disk packs,

etc. Enciphering in this application mere]" add3 another

dimension of security.

This paper details an enciphering algorithm developed

by Feistel and Smith of IBM for comnuter-to-terminal

conununications, A software version has been prepared,

intended to be used as part of the input/output software or

the network interface of Multics. A command to encipher and

decipher online segments has also been written. A proof of

mmmm ■w^""-"- ' ■

i\n Enciphering Module for Multics page 11

the algorithm's reversibility is also given; this was hinted

at but not proved in the Smith and Feistel papers.

-- ■
0^, i—^M—iMiin-, i i,^J

■pvoWOTMn

An Lncipheriny Modulo for Multics paoe 13

traditional enciphering mechanisms of substitution of

strings and modulo arithmetic on strinas. However, by

repeated cycles, essentially a substitution is performed on

not small chärartfirs but 128-bit blocks. Thus such methods

as frequency analysis require computation time on the order

of the lifetime of the universe.

This algoriUhm, called Lucifer, has the added

advantages of simple hardware implementation with

shift-registers and easy reversibility. A general

description of the algorithm follows and then a proof of

its reversibility.

The basic transformations used are one-to-one mappings

and exclusive-ors (mod-2 addition). The input is divided

into equal-sized blocks; each block is processed completely

independently of the others. The following description

refers to one block only. it is thus desirable fron a

cryptographic point of view to use as largo a block size as

possible, since the more bits which affect a given bit of

ciphertext, the harder will be the job of the crvptanalyst.

As mentioned before, a basic weakness in many ciphers is the

small block size.

A block is broken into the ton half and the bottom

half. Without changing the bottom half, it is broken into

easily manipulable units called bytes. Each byte undergoes

one of two one-to-one transformations depending upon a hit

of the key. This collection of transformed byte:; is

'■ ""■

An Encipheriiq Module for Multics pane 14

referred to as confused bytes, and the operation is referred

to as confusion. Next, each bit of the confused bytes is

modulo-2 summed with a different bit of the key. This

operation is referred to as interruption. Now those bytes

are modulo-2 summed with the top half of thu cleartext, the

block previously unused. This is called diffusion. The two

halves are swapped; this operation is called interchanqe.

Sixteen such cycles occur. One complete

cemfusion-interruption-diffusion cycle is called a CID

cycle. The schedule for access'.ng key bits is so arranged

that every key bit is used for both controlling the

confusion transformation and for interruption. The

interchange operation occurs on every cycle except the last.

_

mm

An Encipherinj Module for Multics

Figure 1: Flowchart

k
£0OTJ>iOn

i

jilTUblOiO

fS

ir>teirtkoo^<e

page 15

Figure 1 shows a flowchart of the operator. Thus the

algorithm consists of:

Figure 2: Block Diagram

The only difference between enciphering and deciphering

is the order in which the key bits are accessed. Within CID

cycle n during deciphering, key bits are accessed in the

_________ A- --

■ ■ ■ ■ twmm^mm mmf

An Encipherinq Module for Multics paqo 1C

same order as in CID cycle 15 - n in enciphering. These

operations, explained in general here, are fullv detailed in

Appendix A - Operation of the Lucifer Hardware.

This leads to a simple proof of reversibility, as

explained in the next section.

«MBMUu

p^-^r^^. rwww^mamm

An Enciphering Module for Mulcics paae 17

A PROOF OF LUCIFER'S REVERSIBILITY

Assume there are n + 1 CID cycles and thus n

interchanges. Call output of the CID eye1 o n - 1 MO || M]

(where MO is the first half of the message, Ml is the second

half). Call the output of cycle n C0||ci. The double

vertical bar represents concatenation. M0|| Ml is

transformed in the following manner by cycle n, which is the

last cycle (the first is numbered 0). Confusion: A

transformation T (Ml? is applied. Which transformation

depends on a bit of the key (one for each byte of Ml) but

since the same key bits will be accessed for the same byte

positions during deciphering the specific transformations

selected is irrelevent, as long as they are all one-to-one.

Interruption: T (Ml) is exclusive-ored with specific key

bits KI. Diitusion: T (Ml) + KI is exclusive-ored with the

top half. The total message is thus T (Ml) + KI + MO | | Ml.

Remember that on cycle n no interchange occurs. On

deciphering, this output will be fed into decipher cycle 0,

which is the same as encipher cycle n. Since this cycle is

exactly the same as the last encipher cycle, confusion and

interruption will generate T (Ml) + KI just as before. When

this is exclusive-ored with the top half consistinq of T

(Ml) + KI + MO the original MO will be regenerated.

Since the interchange before encipher cycle n occurs

after decipher cycle 0, the output from the intorchanqo will

^mm ■MM^MftflaHM -■

■■■" ' ' nil ■ ' mm wm*^**m*^^*mmm

Ai\ Enciphering Module for Multics pane 18

also match. Thus the entire n - 1 interchance and n CID for

encipher is equivalent to the 0 CID and 0 interchancje.

Thus these cycles can now be effectively stripped off; the

same proof is applied to a Lucifer consisting of n CID

cycles and n - 1 interchanges. Eventually a Lucxfor •:r ono

CID cycle and zero interchanges remain; this has alread"

been demonstrated above to be reversible.

In the actual specific operation of Lucifer, the

diffusion operation does not consist of a simple

exclusivo-or; instead the bits are permuted in a fixed

fashion before diffusion. This does not affect the

reversibility, since the ciphortext will undergo the same

permutation and thus each cycle will regenerate the input of

the corresponding encipher cycle. However, this permutation

is necessary for the cipher to be difficult to break. It

ensures that small differences, say a one-bit change, in a

given message block will propagate throughout all the bits

of that block of ciphertext. Each bit of clcartoxt

potentially affects every bit of ciphertext, within a

128-bit block.

fe^aMMM MMMMtfe^—~-*MMMM

..... . . ,... .,.
■ ■ - ' " ' ■

—^ — ■ ■ !•■ II I HI MM W

An Enciphering Module for Multics page 19

THE MULTICS SOFTWARE IMPLEMENTATION

Two programs were written as iiTiplementations of the IDM

hardware versions of Lucifer. One is a straightforward PL/I

program which manipulates the bits in essentially the same

fashion the hardware does. The other is a Multics assembly

language program optimized for speed of execution. Details

and lijwings of each may be found in the appendices.

Instructions on using them are given here.

First, a key must be supplied. This is done by calling

the set_key entry:

declare lucifer_$set_key entry (bit (128));

call lucifer_$set_key (key);

This entry saves the key in internal static. This key

will be used for all future enciphering and deciphering

until set^kcy is called again.

To encipher:

declare lucifer_$encipher entry (dimension (*)

bit (128), dimension (*) bit (128), fixed binary precision

(35));

call lucifer_$encipher (cleartext, ciphertcxt,

code);

The packed bit array, cleartext, is enciphered and

deposited in the equal-sized array ciphertext. The code

argument will be set to zero unless the dimensions of

cleartext and ciphertext do not agree, in which case code

MMMBMl ^ammmm

»—» HI ■ iiiiB! imii n '■" "

An Enciphering Module for Multics pane 20

will be set to one and the enciphering not performed. The

ciphertext and cleartext may be the same variable.

To decipher:

call lucifer_$decipher (ciphertext, cleartext,

code);

This entry is declared the same as encipher, and its

operation is similar.

One problem with this implementation is that Lucifer

requires a 128-bit block to encipher each 128-bit block of

the cleartext. If the cleartext is not a multiple of 123

bits the last block could be padded with zeroes, but the

output ciphertext corresponding to this block cannot be

truncated. If it is information will be lost and it will

not be deciphered correctly. This is because on decipher

the truncated block will be padded to 128 bits (with zeroes,

presumably) which is not identical to the original output of

encipher before truncation. Therefore the primitive

subroutines lucifer_$encipher and lucifer_$decinher require

data to be passed in 128-bit blocks.

To make this more palatable to Multics users (to whom

data tends to come in multiples of 9-bit characters or

36-bit words anyway) a command has been written to translate

an entire segment. To set the key, type:

set_key -key-

where -key- will be padded or truncated to 128 bits and is

an octal string.

■HHHMi MMMH»

An Enciphering Module for Multics paqe 21

To encipher a segment, type:

encipher -cleartext- -ciphertext-

The segment whose relative pathname is -cleartext- will be

enciphered. If tht optional argument ciphertext- is not

given the original segment will be overwritten; otherwise

the ciphertext will be written onto the segment named

-ciphertext-.

The input will be padded to a mod 128 bit length with

zeroes, and the output segment will be equal in length.

Note that no additional pages can e'er be required by this

padding, since a page is 36*1024 bits long, a multiple of

128.

To decipher, type:

decipher -ciphertext- -cleartext-

This command operates in the same way as encipher. Since

the ciphertext segment must be a multiple of 128 bits long,

exactly as produced by encipher, the output deciphered text

will be exactly as long. This is because decipher has no

way of knowing how long the original was. This can damage

standard object segments which have significant worda

expected to be found at the end of the seqnent. Note that a

better version of this command would encipher the original

cleartext length into the ciphertext segment.

HMM mm ^MM

■HMnnviawiwvwannw''

Ar EnciphCiTing Module for Multics paqe 2'.

TIMING MEASUREMENTS AND CONCLUSIONS

One of the important questions addressed by this paper

is "Is it possible to take an algorithm designed for easy

hardware implementation and efficiently 'ranslatc it to

software?". Performance measurements by Feistel slow that

the Lucifer hardware module enciphered a 128-bit block in

about 165 microseconds. A version written in 360 assemblv

langugage for the 360/67 i-»quired about 9 milliseconds. The

current Multics hardware, th. Honeywell model 6180, executes

instructions at approximately the same rate as the IBM

360/67. The PL/I versior.. as expected, was extremely slow

and required 10.4 seconds to encipher 72 blocks of 128 ijits

each, or 144 milliseconds/block. The assembly language

version required .4 seconds/72 blocks. or 5.5

milliseconds/block. Multiplying by ten the number of blocks

passed to lucifer__ did not substantially reduce the

time/block, suggesting that 5.5 milliseconds represents real

computation and not overhead. Since Multics characters are

nine bits long, Lucifer requires 5.5 * (9/128) = 390

microseconds per character enciphered. Current!" the

Multics I/O system requires about 100 microseconds per

character for its processing; thus if T.ucifer were used for

all I/O a severe performance degradation could occur.

However this speed probably suffices for the occasional use

to which it might be put.

MM

ww^mr^Bmnm^m* i iiiiuiiiti ^ mm 1
AA Enciphering Module for Multics paqe 23

There are some possibilities for further speed-un of

the assembly language version; this is discussed in Appendix

C.

■MM ■■ mtmm HMfeM

An Enciphering Module for Multics pafje 25

Fiyure 3: Bit Addresses in Registers

7 6 5 4 3 2 1

7,0 6,0 5,0 4,0 3,0 2,0 1,0 0,0

7,1 6,1 5,1 4,1 3,1 2,1 1.1 0,1

7,2 6,2 5,2 4,2 3,2 2,2 1,2 *,2

7,3 6,3 -,3 4,3 3,3 2,3 1,3 0,3

7,4 6,4 5,4 4,4 3,4 2,4 1,4 0,4

7,5

7,0

6,5 5,S 4,5 3,5 2,5 1,5 0,5

6,6 5,6 4,6 3,6 2,6 1,6 0,G

7,7 6,7 5,7 4,7 3,7 ,7 1,7 0,7

0^
0

1

2

3

4

C

7

mm

r

An Enciphering Module for Multics naqe 27

Note also that the author assumed that hiqh-order bits

are transmitted first; the Smith paper does not specify

tiiis. Thus bits arc first loaded into position 0 of the

convolution registers (top half), then pcition 1, 2 etc. on

to position 0 of the source registers (bottom half) .

Each of the registers shown is connected as a circular

shift-register. In addition, bits can be shifted from the

convulution registers to the source registers and back for

tiie interchange operation.

A complete enciphering or decipiering operation for one

128-bit block consists of sixteen

confusion-interruption-diffusion (CID) cycles, with ai

interchange cycle in between each CID evele for a total of

15 interciiange cycles.

At the start of a CID cycle, byte 0 of the key is

copied into the transformation-control register. This

register will supply eight bits for controlling the

confusion operation; each bit will correspond with one byte

of tiie source registers.

A CID cycle consists of eight shifts of the source,

convolution, and transformation-control register (TCR). The

TCR siiifts vertically upward; other registers rotate

horizontally, byte n going to byte mod (n - 1, 8).

An individual shift of a CID cycle occurs as follows.

Uyte 0 is taken from the source registers. It flows into

the confusion box along with bit 0 of the TCP. A one-to-one

MM - ^M^M

An Enciphering Module for Multics page 28

transformation is applied to this byte, according to the bit

from the TCR. The output from the confusion box is an

eight-bit confused byte. Each bit of the confused byte is

exclusive-ored with some bit of the convolution registers;

note that no two bit positions are in the sane byte. Fach

of these result bits is exclusive-ored with some bit of the

rightmost byte of the key; this constitutes the interruption

function. The result of this operation is stored in the bit

position of the convolution registers to the right of the

pair of exclusive-or gates. Note that diffusion occurs

before interruption, but this is immaterial since mod 2

addition is commutative. As the result bit is stored in the

convolution registers, the convolution registers, source

registers, and TCR undergo a shift. Thus the bit tnat

previously was to the right of the exclusive-or gates in the

convolution registers is not destroyed; it is shifted right,

and the result of diffusion occupies its old position.

These shifts are executed eight timeü for each CID

cycle. In addition, during each shift the 16-byte key

registers each rotate right one position with one exception:

during the last shift of each CID cycle the kev register is

not rotated during encipher; during decipher the key

registers rotate two positions after the last shift. Thus

seven key shifts occur per CID cycle on encipher and nine

key shifts occur per CID cycle on decipher. This, coupled

with an initial shift of nine positions before processing

mmmmm^

« -w^*-«p^v ■ ■

An Enciphering Module for Multics page 29

any blocks, constitutes the only difference between

enciphering and deciphering.

\ When eight shifts of one CID cycle are complete, the

source registers will be back to their original position.

The convolution registers are also restored except that each

of its 64 bits has been exclusive-ored with exactly one key

bit exclusive-ored with exactly one source bit. This is

guaranteed by the placing of the gates in a different byte

position for each bit of the confused byte. The key

registers have been rotated either seven times (for

encipher) or nine times (for decipher). The TCR has yielded

all its bits. An interchange cycle now occurs, unless this

is the last CID cycle. This consists of connecting

positions 0 anJ 7 of the source registers with positions 7

and 0 of the convolution registers, respectively; oiaht

shifts now occur. This merely swaps the contents of the

registers.

Now the next CID cycle begins. A new key byte is

fetched into the TCR. On CID cycle 1 this will be byte 7

for encipher and byte 2 for decipher of the original key.

It is important that the key bits be accessed in the

reverse order (between CID cycles) when deciphering as

compared to enciphering, but in the same order within each

CID cycle. This is to ensure reversibility, as explained

earlier. In addition, for cryptographic strength each bit

of the key should be accessed a^ equal number of times:

. . . J._
mm ■MMta ^ttm t*_~ ■■- •'• Mii.

■" - ■■ - -' ■
~———-

An Enciphering Modula for Multics page 30

eight times for interruption and once for transformation

control of one byte of the lource registers. The following

method of accessing key bytes was thus devised. If there is

to be an encipher, the key is initialized by loading it into

the key registers. If a decipher is to be performed, the

key registers are then rotated so that the first CID cycle

will use bytes 9 to 0 rather than 0 to 7. After each CID

cycle there will be no key shifts on encipher, but there

will be two shifts durii g decipher. This will cause the key

Mki ■ - — - -

^""■"■mn 1 ' ————""^w^

An Enciphering Module for Multics

bytes to be accessed as shown in table 1.

Table 1: Key Byte Access Schedule

paqe 31

CID cycle encipher

0 01234567

1 7 8 9 10 11 12 13 14

2 14 15 012345

3 5 6 7 8 9 10 11 12

4 12 13 14 15 0 1 2 3

5 3456789 10

6 10 11 12 13 14 15 0 1

7 12345678

8 8 9 10 11 12 13 14 15

9 15 0123456

10 6 7 8 9 10 11 12 13

11 13 14 15 0 1 2 3 4

12 4 5 6 7 8 9 10 11

13 11 12 13 14 15 0 1 2

14 23456789

15 9 10 11 12 13 14 15 0

decipher

9 10 11 12 13 14 15 0

23456789

11 12 13 14 15 0 1 2

4 5 6 7 8 9 10 11

13 14 15 0 1 2 3 4

6 7 8 9 10 11 12 13

15 0123456

8 9 10 11 12 13 14 15

12345678

10 11 12 13 14 15 0 1

3456789 10

12 13 14 15 0 1 2 3

5 6 7 8 9 10 11 12

14 15 0 1 2 3 4 5

7 8 9 10 11 12 13 14

0 12 3 4 5 6 7

The byte of the key used for transformation control is

in the left-hand column. Note that the decipher schedule is

the Liame as the encipher schedule read upsidcdown, but

within a CID cycle, read horizontally, bytes are accessofl in

the same order. Also note that the key registers will be so

positioned after sixteen CID cycles ready for the next

.^^■■■aaBMa*. ^■i«

■ ■ " ■ ■

An Encinherino Modulo for Multics paqe 3.''

block: in byte 0 for encipher, byte 9 for decipher.

The exact nature of the confusion operation har5 not

been explained yet. It is not important particularly what

it is, as long as it is one-to-one and sufficiently random.

It works as follows. Each byte to be confused (from the

source registers) is split into two four-bit halves. If the

key bit from the TCR for this byte is 1, the two halves are

exchanged; otherwise no operation is performed. Next, each

four-bit half undergoes a one-to-one mapping. The method in

hardware used decoders, encoders, and permuted wires, but

effectively a table look-up was done to associate with each

of the sixteen bit combinations a unique four-bit

replacement. The two mappings for the two halves are

different; the one for the top half is cal^e i SO and the one

for the bottom half is Si. Finally an 8-bit byte is

generated by permutiig the eight wires irom these two

mapping networks. The result of this entire confusion

operation (and the way it is done in the software versions)

is to consider the key bit concatenated with the source byte

as a nine-bit index into a 512 element table. Each element

is an eight-bit confused byte. This is explained in

Appendix B, the PL/I implementation.

-—-

II •! J"l ^mm^m^*mm^*mm

An Enciphering Module for Multics page 33

Table 2: Four-bit Permutations

input

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

so SI

1100 0111

1111 0010

0111 1110

1010 1001

1110 0011

1101 1011

1011 0000

0000 0100

0010 1100

0110 1101

0011 0001

0301 1010

1001 0110

0100 1111

0101 1000

1000 0101

mm ^^

^i^

An Enciphering Module for Multics paqe 34

APPENDIX D - THE PL/I IMPLEMENTATION

The PL/I implementation is very similar to the hardware

desiyn. However, instead of rotating data toward the low

address end of each register, index values into fixed arrays

are decremented and wrapped around to the high order end.

Note very carefully that each byta shown in the hardware

diagram, those bits arrayed vertically, are rows of

two-dimensional arrays. Thus ..fa conventional PL/1 array

is printed it will appear transposed as compared to the map

of the registers. For consistencv within this document all

arrays will be transposed from the conventional order so

that they appear identical to the hardware bit orderinqs.

Instead of doing 15 interchanges (unlike most other

operations, a real movement of data occurs on interchange)

16 are done. This last interchange is undone by copying the

source registers first into the result block followed by the

convolution registers. This is to avoid checking within the

loop for the special case of the last execution. Similarly

rather than skipping a key-shift cycle on encipher and

performing an extra one on decipher each CID cycle, eiqht

increments of the key index interruption_row are always

performed. After a CID cycle is complete, a fixup variable

either one or minus_one is added modulo IG to

interruption row; this variable is -1 for encinher and 1 for

decipher.

HBSMMM m—M

mm^m^mv^m ■"

An Enciphering Module for Multics page 35

The program operates as follows. It copies the first

half of a given 128-bit block into the

convolution_reyisters; the second half is copied into

source_registers. The interchange_index loop counts the

CID-interchange cycles, sixteen in number, within that loon

a CID cycle is performed by assigning interruntion_row to

ks_row, interruption_row shows which byte of the key will

next be used for interruption, ks_row shows which byte will

be used for transformation control. This assignment is the

equivalent of copying the next byte of the key into the TCR

at the start of a CID cycle. Now the data_row loops eight

times, once for each byte in source_registers. The entire

confusion operation is implemented by a 512 byte Lable; the

first half for key bit » 0, the second half for key bit = 1.

Thus the confused byte is found by indexing this table with

the key bit identified by ks_row and data_row concatenated

with the source byte identified by data_row. Now

convolution_index loops might times, once for each bit in

the confused byte. Note that this is all done in parallel

in the hardware version and in the assembly language version

described in Appendix C. Each bit of the confused byte must

be exclusive-ored with some bit of the key byte identified

by interruption_row. Just as the key interruption wires

were permuted in the hardware, so key_table tells which bit

of that key byte is supplied for each bit of the confused

byte. This interrupted bit is now exclusive-ored with some

rfMMBfli m—m

I'm mm

An Enciphering Modulo for Multics paqe 36

bit of the convolution registers. The register in which the

bit lies which will be diffused (the one to the right of the

exclusive-or gates) is the one corresponding to the source

register from which the interrupted bit was derived. The

number of this register, the column in the PL/I sense

(althoug.' it is horizontal on the diagrams) is therefore

convolution_index. The byte in which this bit lies is given

by a table, convolution_table. These positions rotate right

around the registers, one position for each shift of tlic CID

cycle, once for each incrementing of data_row. Therefore

the correct convolution_table entry for this bit of the

interrupted byte must be mod-8 summed with data_row; this

supplies the byte or row number of the target bit.

After this byte is complete, interruption_row is

incremented mod 16 to simulate rotating the kev registers

once to the right. Now data_row is incremented to have the

effect of rotating the source, convolution, and

transformation-control registers.

After the eight loops of data_row, interruption row

must be readjusted to simulate only seven key shifts on

encipher but nine shifts on decipher. As explained before,

a fixup variable either_one_or_rainus_one is mod 16 add^d to

interrupLion_row; this fixup variable is set at the entry

points. The two entry points also set the initial

interruption_row, either 0 for encipher or 9 for decipher.

After sixteen loops of interchange index, sixteen

——■!—!■!

 ^

An Enciphering Module for Multics paqe 37

CID-interchange pairs have been performed. «M block is now

copied into the result field; the source registers are

copied first to undo the effect of the extra interchange

cycle.

-

M

\ %
3

V

C
t

C

._••£.
k»^ —
*» I
k. c

• c
\ J -
t c *-
z k- :
c I-
b* c
It *J ft
41T

>
c

x
c

C
L
n
c
)
k

If
>
C
>
t
c
c

It ♦
w «

I. x 3

«. C ••

t
it
e

1

C

x
a
i
c

I -

L
C

a
c

c

X a

c
L

t
IT

«
l/l X i.

c - t .
— I C ^.- = c
4- C — 5 ^ > .
— C*-t »Ct^«

« c «- - i c (.=
- C = C t ♦ C ^ C
t; - > c c «

— C i. c. o «- Q. r

Ill LC>>V t

* c r 4 I lik*<
> «- «. fc. C 1 11.

^C— «-tCftw »
C c -t ^ — — ^ li-i
» en— ^^ : t*

M k 1 << c
• I C x^ L - X

C li. > C = T
- c ^. c >- — c
^ c c c -

I 3 - U C »- > I
.- *- fc. w ^ [(.

> C = vi ^ c c
C > - x I J. i. ~
»-. c.c=-rw^

I C > (/> a IT g
t tc^nwt^
t ^- C M «- C
- t - |- v >

f c c c ; c

c
>
|
c

1/

IT b
k- «

fl * i. u 1
k-

• «. •« M c' - fc> ^ — C -- A •% IT k. c «

i
— A

•« C tr
-^ k. ._

ft .
k- 3
1-

4 C X * « 1 . (. >
> • C

a. C

• L «.
^ C k.

— |
k- t
3 C

' * 1
k- = r

IT «^

X
C

> r • » l k c. ^ c «-« t. c.
t 1^ > w t —

— k. tJ
IV C

0- C t
» c t
k. w „

k. w
*- m
IT

II <* ^ i 1 1 k
K « 4 1. 4- II r"' c t LC« * t c k. — „

X ri
X 1 = k. ii

c «-
k. 0 Ifl IT .-^
a x

c -
N *

6 ^

% kl
4-1 W

1 L
L — * *

L C ♦ k- « k. I L c i »-^ ft c c •~ £ IT 4^
(. c
C k

«r v 4^ t^J

- S ft t *• 1/
L 1 c « — 4- ft C c 1 k- N c k. v- k. c. c c c ■» w ft - 1 i i Sf M L MAC

1 L
c —
C w

H C

5 w
0. <« ft C

1 |Z-
X K
4 4

•" c »- |B 4 ft 3

C X 1*-
6
a. L|fc« > >

C. L
c -

i. C L >
I C C > >

•% IB W

c
ft m C
4J w »J Vl T *- C X ^^ s-^ • 1

t L 3 C *~i ^ ^
c *" 3 t- u t

c c c.
c c

1 1 • v c C It It X ^ > k. k. k.
c L c V W 4-'
4. c •^ 1/1 (fl k. k.

*- 4-1 c
X X J X 1!
c. c •*
It ft i/i i/i ft

X
c
L M •% c 3 c X t *^

Li c 1 ft •%
C

ft 1 k- >
C

f 1
« 4

w
IT

* I

ii±i*t£±*±*.i i til

c c L c c c ^- ^- W^. ^- ^ c. c I c

cc<-c:cccr>Ct,ec c c et t
cc<-t.tci-c.cccc cccc

'"■■-'•-••-'C.O<->>->C t^^l« M V<ClC
»* •-' mr* oc- o c ^.« . . , . , ,_,,_

f i fi i i i t if f f f f$i
c o c c- oc «^^^-^^ c cL I

c,-,C_»-iCr-<Of-ic>-'C.>-.c. r-lC »-i

•^•^•^•"'OO'^'^OC •-•#-» *•* t-HCC

COc.CC c« ^-•^i^-i^-i^-. cccc
<-■•'.--,. f CCC.i->^iC-C^I»--

-•-'Cf-lC'-'C^Ci-HC i->C^iC

""-'•-l>-'CC'-«"-'CC •— «f-l^ccC

CCC-CCC-CCCCCC C CC.C

L

ii£iiiii±iii±i i i *
cCCCCc<-''-<-i»-it-l»-CCCC. «
CO^-i-if-^t OCC-t-^->CC^.r-i«-
•-C ^iC ^-.c •"C ^.C fC ^-Cr-.C
C'-'C'-'C^HC-.-icrrHC^-.C r-.C»->-

t-i^ff^)»-iCc»~,*,~,CC^-^i^-»—cC c
*l •-•-'^•»-•C.tCCi-i^.^-.^. c-t^-t-k
■^ '^Ci-*C*-tc»-«Ci-tC^*Ct-tC.r^C &

i iiJ-^-t-SJ-.LlllllSll

COCC CC'-'-'^.t-^f-iCCC C —
CC:,-n-.i-ir,crC CC ^-.-.c C r-»-t-
C cccoocccoctcccc \t.
c- •-•c «-c.^c^c<-"c:^.c,^-ic F<
—'Cf-.Ci—C'-'C^HCi-CJ-C^.C ••
,M,r^i-*»-,Cc'^»^CC. »-if-H^-ip^c c
•""•""-•CCC C.^,^^.^ c Ct-^C
^5»-<5-»-C»-'C:^,c.^c fiCrnC^-

c

^^■t-^-CXlllXllll l" 1* — «» |> t * ft ft it t g t (f i JI .
CC.CCOc."i-t-.i"^I-,CCCC c
CC^-i-i^.^,CCcC>-r-iCCr^^-« •-
^C^C^O^-C^iO-C r-Cr-C £

CCCCCCCCCCCCCCCCI
"^•^-•-'C-C.'-'»-'CC>-'^-»-^cC —
^^^^HCCCC:^I-«^CC^-.^T (. rrrrrrrrrrrrrrrr^ *

t

t cc:ccc:c.'-''-'i-"—'t-'^-icc.c.c. c *
•- CC.-if-<.-",-1CCCCf-"r-iCCfHr"; *^

•-'C.i-iCi-IC'-'C^-lCr-'c^-iC-r-COL C
I- •-'•-'•-«•-•c:c.'-'»-'cc>->^f-.>-.ccw

C : r i r r r I = r : i : r r i ; - C

• iiiix.i.1.1 /1 ± / f i f 4 ** <-
r c-c_cc_c"c_*M»-*#-t»-<»-,»-«cccc u
1 CC.i-('--i'-<>-,C.C-CC'-iI-.C.Cf->i-i —
C •-'OrtC:»-<c'-|Oi-<c-'-'o«-<c»-.c —
L cotcocrcctccccecc u

•^Cf-lC •-*0»-'Cr-(C »-»c t^C »-»c
t; •^•^•-^*-HOC.»^'-,CCr-l^.(-i^1CC_ u
C •-••-'■-I'-'CcCCi-l^it-.^HCC^.»- l_
•- Ci-IC»-<Ci-iOi-iCr-C,-iC-rHC»-' S

I i

MMH

An Lncipherimj Module for Multics paqe 43

APPENDIX C - THL ASSEIIBLY LANGUACE IKPLEI^ENTATION

The basic philosophy of the Multics assenbly lanquaqe

version of Lucifer was to produce a program which could

encipher or decipher at the highest speed. This does not

contribute to the readibility of the program; therefore this

explanation is quite detailed. If the reader is unfamiliar

witii Multics assembly language, a short introduction is

given in Appendix D,

The set_key entry does more than store the key in

internal static. During ciphering the key is used in two

places: transformation control and interruption. For

reasons explained later, each purpose requires the key to be

in a different format for optimal operation. To avoid key

manipulation duriny ciphering, set_key stores the key in two

variables, key and explodGd_key.

In exploded_key each bit of the key is given its own

nine-bit byte. The high-order hit of each byte contains tho

key bit; the low order eight bits are zero. This key is for

transformation control. In the diagram below showing the

storage assignment, the ordered ^air in each byte position

gives the byte of the key number and the bit within the

byte. As in the hardware diagrams adjacent bits of a byte

are arrayed vertically, although it is more conventional to

show memory words horizontally. Thus each byte of the key

An Enciphering Module fcr Multics naqo 44

requires two words; thirty-two words for 128 bits.

Figure 5: Exploded Key Bit Assignment

30 28 20 24 22 20 18 1Ü 14 12 10 8 G

120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0

121 113 105 97 89 81 73 65 57 49 41 33 25 17 9 1

122 114 106 98 90 82 74 66 58 50 42 34 26 18 10 2

123 115 107 99 91 83 75 67 59 51 43 35 27 19 11 3

124 116 108 100 92 84 76 68 60 52 44 3C 28 20 12 4

125 117 109 101 93 85 77 69 61 53 45 37 29 21 13 5

12G 118 110 102 94 86 78 70 62 54 40 38 30 22 14 6

127 119 111 103 95 87 79 71 63 55 47 39
1

31 23 15 7

For interruption, the key bits within a key byte are

not accessed in the sane order as the confused byte's bits,

0, 1, 2...7. Rather they are accessed 2, 5, 4, 0, 3, 1, 7,

6 as given in key__table of the PL/I progran or as shown by

the wiring of the hardware. To avoid the use of such a

table and lookup time during ciphering, the key bytes are

presorted by 3et_key. Lach 3-bit byte of tho key is stored

ii> thj high order part of a Multics 9-hit byte, the

remaining bit being zero. Thus the storage assignment is as

I 11 I II^^PHP"—

An Encipheriny Module for Multics

shown in the diagram below.

Fiyure 6: Key Bit Assiynment

5 4 3 2 1

0

paqe 4 5

4 0 12 8 4 0

5 1 13 9 5 1

6 2 14 10 6 2

7 3 15 11 7 3

<v

i

2

3

Words 0 and 1 are copied into words 4 and 5. This is

to permit directly addressing eight bytes starting at any

byte between 0 and 15 without programming a complicated

wraparound routine.

The basic idea underlying this program is to process

all 64 bits of the source and convolution registers at once,

each CID cycle. In order to do this, the key bits must be

so arranged that each of its bits lies in the bit position

corresponding to that of the source register bit with which

it will be exclusive-orod during interruntion. This

explains the rearranging above.

When the encipher entry is called, it sets

interruntion_rou (held in index register 2) to zero as in

tiie PL/I program. Since an entire CID cycle is done in

parallel, interruption_row will never be incremented along

the horizontal line of the key byte access schedule given

earlier. Instead it will be incremented each CID cycle to

assume the values given in the schedule's left-hand column.

Examining the schedule it can be seen that interruption row

W ^WMMMW ■ l11 ■' ' '■ ' '•"'•• — n i < ■«

An Encipheriny Module for Multics naqe 4 6

should thus be incremented by 7 for encipher and -7 for

decipher, modulo IG. Thus each entry also sets the variable

either_7_or_minu3_7 to the appropriate value. This is added

to x2 mod 16 each CID cycle.

After the argument extents are calculated and pointers

to the strings fetched (bp -> input string, bb ^> output

string), the main loop is entered.

As in the PL/I program, the first 64 bits of each

128-bit block are placed into convolution_registers, the

next 64 into sourcc_reqisters. As with the key, each 8-bit

byte is placed in the high order eight bits of a Multics

9-bit byte. This unpacking is accomplished by unpack loop.

This loop depends on the fact thut the assembler will assign

source^registers a location after convolution registers

because it is declared afterward. The low order (high

address) bytes are unpacked first.

Once this is complete, sixteen CID-interchange pairs

are executed.

First, the convol"tion registers are prepared for the

diffusion operation. Referring to the hardware diagram, one

can see that each bit of a confused, interrupted byto

(vertically arrayed) corresponds to a different byte but the

same bit (i.e., horizontal register) of the convolution

registers. As seen in the PL/I program, if a source

register bit has address [i, j] (byte i, bit j) the

convolution register bit corresponding to it is

mmtatm

w wmrnm"^"™ ■

An Encipherinrj Module for Multics page 4 7

[mod (i + convolution_table [j], 8), j]

where convoluticn_table is [7, 6, 2, 1, 5, 0, 3, 4].

Instead of looping through each bit as the PL/I proqram

does, the convolution registers are rotated so the bit

positions for diffusions line up, correspondinq with those

of the source registers.

Since the horizontal registers are the bits to rotate,

the bits to rotate are not adjacent. Thus the bit addresses

within the two-word convolution_registers of each bit before

rotation is as follows:

Figure 7: Convolution Registers

7 6 5 4 3 2 1

63 54 45 36 27 18 ■ 9 0 0

64 55 46 37 28 19 10 1 1

65 56 47 38 29 20 1] 2 2

66 57 48 39 30 21 12 3 3

67 58 49 40 31 22 13 4 4

68 59 50 41 32 23 14 5 5
—!

69 60 51 42 33 24 15 f. 6

70 61 52 43 34 25 16 7 7

Motice that bits 8, 17, 26... 71 do not anpear assigned

on the matrix. This is due to the unpacking of each 8-bit

byte to a 9-bit byte. The unassiyned offsets are those of

the pad bits. The purpose of this rotation is to align

all the cxclusive-or positions on the rioht edge of the

matrix. Looking at the hardware schematic, the desired

«^■^■■mHVPMmpHPMiMp^^ ' ■■ '

6,0 5,0 4,0 3,0 2,0 1,0 0,0 7,0

5,1 4,1 3,1 2,1 1,1 0,1 7,1 6,1

1.2 0,2 7,2 6,2 5,2 4,2 3,2 2,2

0,3 7,3 6,3 5,3 4,3 3,3 2,3 1,3

4,4 3,4 2,4 1,4 0,4 7,4 6,4 5,4

7,5 6,5 5,5 4,5 3,5 2,5 1,5 0,5

2,6 1,6 0,6 7,6 6,6 5,6 4,6 3,6

3,7 2,7 1,7 0,7 7,7 6,7 5,7 4,7
_ . . .

An Enciphering Module for Multics paqe 4 8

position of each bit is as follows:

Figure 8: Postrotation Convolution Registers

7 6 5 4 3 2 1 0v^

0

1

2

3

4

5

6

7

This rotation is accomplished as follows. Row 0 (bits

0, 9, 18... 63) must be rotated right on the diagram (left

in the AQ register as it happens) seven positions or 6 3

bits. Row 1 (bits 1, 10, 19... 64) must be rotated 6

positions or 54 bits, etc. An array of masks, and_masks,

has been prepared with a 1-bit in each bit position for a

given register. They are ordered according to the number of

positions of rotation needed. Since register 5 needs no

rotation (because the exclusive-or gate is already in byte

0), the mask for it occurs first. It consists of four

zeroes, a one, eight zeroes, a one, eight zeroes... Thus,

when convolution_registers is loaded into the AQ realster

and is ANDed with this mask, only bits 5, 14, 23... 63 will

remain. This register is rotated 0 bits loft and then ORed

into a previously zeroed doubleword, named "normalized".

-'

An Enciphering Modulo for Multics paqe 49

.4ext, register 3 must be rotated left one position or nine

bits. Thus the second mask has a one in bit 3 and a one

every nine bits thereafter. After ANDinq the

convolution_registers with this mask only bits 3, 12, 21...

66 remain. The AQ is rotated left nine bits, and ORed into

"normalized".

There is a pointer to and_masks called and_masks_ptr.

It is referenced by using the add-delta (AD) type indirect

reference. When an indirect reference is made through this

word, after completion of the specified operation the

contents of the delta field (here 2) will be added to the

address field. Thus the next time the AQ is ANDed the next

doubleword mask will be used. Similarly an AD word controls

the shift count. The first time through the loop the AQ

must be shifted zero bits so the address field of this word

contains zero. After every indirect reference the address

field will be incremented by the delta field, here nine.

Thus the rotate counts will be 0, 9, 18... 63. In addition

this word is used to control the number of times the loop

will execute. After an add-delta reference is made the

tally field of the word is decremented by one; if it reaches

zero the tally runout indicator is set. This tally field ir,

sot to eight before beginninn the loop. Thus the loop will

iterate eight times, due to the transfer-tall"-runout-flaq

off instruction at the end.

After preparing the convolution registers, the

'" " - ■ —

An Enciphering Modulo for Multics paqe 50

confusion operation is performed on the source registers.

This is done by loading the source registers into the AQ and

shifting right one bit position. Now each 8-bit byte

appears right justified in each Multics 9-bit byte of the

AQ. The AQ is now ORed with some doubleword of

exploded key. Each bit of explodcd_key occupies the hiqh

order bit of a 9-bit byte; thus eacl. bit to be used for

transformation control now resides to the left of the

corresponding byte of the source.

The doubleword of exploded_key to use for

transformation control is equal to the byte of the key

addressed by interruption__row. This is because each byte of

the key uses a doubleword of cxplodGd_koy, and because

interruption row (in x2) always addresses the first byte of

the key to use for interruption this CID cycle which is also

the byte to use for transformation control. Sine" even the

doubleword instructions address in v/ord indexes,

interruption row must be doubled. This is done by adding it

in twice, once in the epplb instruction and once in the oraq

instruction itself.

The AQ is stored and translated by the mvt instruction.

The confusion table used here is iüentical to the one in the

PL/I program, except that each 8-bit result byte is as usual

left justified within a 9-bit byte.

These confused bytes are now interrupted by

exclusive-oring with the eight bytes of the key addressed by

 '»■ I • ■ II T

An Enciphering Module for Multics paqe 51

intcrruption_row. Diffusion is obtained by exclusive-orinq

with the prerotated convolution registers stored in

"normalized".

The interchange operation must, as well as swapping the

source and convolution (now stored in "normalized"),

unrotate the convolution registers to undo the effect of

lining up the oxclusive-or gates described above. This is

done via a very similar loop to rotate_loop. A

subtract-delta modifier references through andjnasks ptr.

Since this modifier subtracts delta before indirectina the

masks will be used in the reverse order. The shift counts

needed are shown below; the add-delta word for shifting

aqain supplies loop control.

Table 3: Convolution Register Rotation Counts

Row Pruvious Rotation Post-Rotation

0 72

9 63

18 54

27 45

36 36

45 27

53 18

0 63 9

The register accesses and rotate counts for the prerotating

should be read down; for pnstroMt ion the table should be

read up.

■■ mm

An Enciphering Module for Multi -s page 52

After sixteen CID-interchange pairs, one more

interchange has been done than desired. This is undone by

swapping the two registers. The bytes are now packed into

the result field.

Some possibilities still exist for speedinn up this

program. The two loops controlled by tally words onlv loop

eight times; they could be exploded into eight copies.

Since the address of and_masks and the rotate counts would

in each copy be known at compile tine no indirect words

would be needed. In addition the loop control instruction

ttf would be eliminated. Counting ttf as two memory

accesses and each of the tally references as one, four

memory accesses could be saved each rotation. Since eight

are required in t >op, and there are two loops, 64 memory

accesses would be saved. Eight more would be saved by

eliminating the tally word setup instructions at the

beginning of each loop, for a total of 72. Since there are

sixteen CID cycles a total of 72 times 16 = 115 2 memorv

cycles might be saved. This may total as much as a

millisecond, thus saving about twenty percent of the cipher

time for a given block. This demonstrates how sensitive a

program's performance can be to minor changes in coding

style. Other experiments are suggested, such as completely

rewriting the program with all arrays transposed (so that

the bits of a byte arc not stored .sequentially) , or

eliminating the padding bit on each byte.

w ii ■

H

B

I >

3
I-

\ I

M u
" r
f —

Jl (A

>• c
x. o

2 i
o

£ —
U II
- J
k >
- V a c

o o
o I

1

u <

3 «
k •-.

o
O k
« a.

^ . J

w >• c — « o
M — m
- i- ■

TJ 3 J —
O — >

k. VI T) —
tl £ (IT>

*- O C
— *£
O W OD u
3 O k.
-i »»- w IB

o u

O — k «
- OK

. .. 1

O M
.- £ . r
* *-* O &
L. «- *-i
«3 >«
> . k

— ^ i

— a c» a»
u E -< «^
« 0 3 a u «a
(A Ml

•o b
IQ — XJ

3 >S
u> 0 E »i
— U £

C «/i «<
"» E T3 M
k fl 3 Tl
M k u

2{

IV
•■' >

SI

I'
* Qi
3 N

o o
Ic

K .
I«

k ti
«l u
r. x
k>£

V T3
« tl

C ■A
0 3 — «^
- o
M U

5«
M k
K 3
« 0

O " ill ».
•-• » » 3

> »r c —
« u «^ o 'S /- •. •

-■ u» n c " t
•» » • ■O 0» 3 —

N « •) "O |— — i»
• " -o I •* I o —

— OIJ~ OKC —
I I I I It) 0 C

■3-1-11^^

li
c —
0

— I/I
.- tl
a --
3 >
k n
w
tii~
M
c ■o

— k

- t
i« k
- o

c o

•l i
■* o

o c
o

V —
k« M
> a
£ 3

W
£ k
k> ü
c <->

— c
c — «^

k J *<
I«

C tl —
o -

— U k
kl)h O
a <j<k
3
k o w
k — to
tIKJ <9

C £
— O C

— •£

w k. V
— I» k

f2i

IS —

o

<k c
•a —

c k
O k.
~ a

3 k —
k> £ k

M a -- o

» TJ
k a a a
"333333F E
CCT<TaaCT78)«i4»
oiaivaivAiv^k*^

Jo
l~

k •
»i i
£ C
w —
— o

r>l-~ tl--,

^ - . - -
3 1 15 M k
a ii a» in w

r

c —
o a

c v
o

SI
I«
C ai — '"
■ 3
k (A
« IA
k> ID

J

tl Tl
ik a • t-f o —

o
r
>

a £ u ••• c
£ iA k* iA • C »
O — «t * —._ I

— ■o c ■« c l •
£ « - H w

•' IJ e
«I • kl WQ _
TJ k 3 k C TJ
Ob a - -i i
U £ n c o ■

k> . 3 £
•< IA »J o — -<
tl A O O tl U
V— C > «l£ I «

k • ^ k* .-
U • kl 3

IA ^ 3 O i
II k> o I •-•

T3 3 1 T3 V
O H — C

O Iw tl
u IB E —

WQ ._
k C Tl •
" T 3
a c o • w

3 J •>•
w o — *^ #-»
. .1

£ r^ r«. r^

1 T) -B *J
a v ti iA

" O 3 O
-. _TJ —
c a < %

— O TJ o ' * -*

r< O f» I« O
K « — a N «
" ^ « S C «
IA • — U u V

n

i» K •-• —
 D
a a a

£ tl
k> -O
-• I
C ki
tl 3

— O
I I

k# IB fv* ^ —
K -(j
ti a a a

£ L

C k>
tl «-•
— c
I»

I
IBAa<^^ki fl££i-«r-.

a a
^ » ^ K
aaaTiAaaja^iAaM
»•Du-a — wa-u^Q-o— E c
tl'-lA'BaiAtl'lA'BTUkl

B

s II

MHI

'^^^^mrmfm^m

I
8

t

a c
C «J
L 9

— c
c c

c c

c «.

If.

s

«
« «

C 3

"c. c
10 <c

c

QX
X X
c c
Q C
«, 0)

Mi MM bJM

1

C »ft " I » ^,
^ i

1» X
X c <- tt *~. k c *-* c *A f- •
^1 IT C X U. y «. X ft

•— ■■ _ y *« L I T
X u c * • it t - < »- • b
•-» t T * - »- c

b w c % t % • c rfl

B V- Jf *■ c r~* • ¥ 1 X
— c kl V rf •■ — k ^ X « 0 Jl * bM «
c L t 1 * C V ft X M
w A « c c X c 3 * krf ft
> c S C • c C 1 It «- > c c

u ^ c 1 c c (« X t T . —
k c •- *J <- c ~ 1 tfl X • C X rf! VI
H " fc* ^ > ». k b • k k ft* C 1 T X >

iA «k k •— X > » : L 1 * h t ft k
W. ** JL * J v u c l- «C »1 lf| « ^ C

C 1 1 •- «rf ■ c 1 ^ tf^ *- ft ^
4. I * i .. *. 4 > v *— c c — ^^ C X > il ^ \ c % • J ~- »- C 1 c mix >> •< > • c * *. t — ** c • 1 X >■ c > k. t X ^ «. C k
c

C
M

4 C

•

X

Ci

C
k

t
>

X (.

t
k

k t
c — —

— It w

— X

*-
z

c
>

C C k
*-
t
ft

» t .»
k M

X »
* x c <
X 1 k k

1

ft I
k .k
X
ft V

c

ft
X ft

1 t «. I — c o w • t kt — X k C »1 c w X V t X X < *- ft
IA t - E c c «■* *- fea ■ V— L ^ | J c — t ■ u 1 — ft It \ b «* *.
IT T r c c •- X • n k c ^ o k X «- 1/ k x a ft - >
C w t ^ > — 4-« — 1 »J «re M « c & l/l k c w v ft ^- X
t t 1 t C w t •~ o K E w C» H L -- k *■ > ft *- — ». i ft
c 1 X k. C — ir 4« « k C 3 k -. - — » I X > k « J bi
I. c c ir. «* • c c. c = c c «. ■ t i It <• « k r. ft r it o It
c f -

It— c
C H

*r C c
— It
1 t

» c « <. N k.
>- c I k ♦- —

L
r.

w

c
— « X c

¥1
ft

C ft M
c V u« > » w |ii i *■- s It » A — C m ft
h ♦ c t > k. X V *- • » « > *^ -. a - *- • • ft

4 « < « «• X - * 4 il c It L • c r it L «• c c s XX — ft 2 - b i.

L H k * •w k w ki k. k ,>.■> « ^ t *- «: t C »i c c T .— w i J t- c c •^
n 1 «. < c %
a. i •J S v ■- I > x t * > l> k c 1 ft L ft C r- i

1. p *- •- X > ^ C ♦ K •AI

« n. h »> k <- L b >- C It x . » a «
** (- I ■ t ^ — •- — *- c > ^ .ft \ 1 • - T — _ * C C- « I« c C ft ■ M ^i^

'. i. [c « t It u • <* X • c i k « « ft ft i
c 1 C c • X c • k « % I t- VI ft. •■■« 1 - 1 w ft
L c •M — X 1 \ _ • k t C m- c ^ * ♦ c > c — X > > > *> ^ I ^ . >■' 3 1 >. Ik t c C ■ XXX E V X t X c c m ft «1 X X X I

•■ t 1 •» z «> c s I c ^ t M c > k ft k. ft k c t X 1 - | |c
j3 t- V u C L ■» ^■ > % w ■^ £Sl *- r c N N — c c ft c 1 kX x c

c «rf c L & ^ X X X ^- ^- ^* : 1 1 3 ».- E k. — r. ft C ft t - • c c
to

c 1 T 1 — «L _ ü C -c r- X 1- H ft It 3 ft c «> M w w VI rfl u

c
^ > 1 u t. 4 *- | • « c . c c t It^l «- c C *- ft. H *J ■ C » * — - :
11 b i/w D X •— C •= c »c > (— — It •-- [c «. > It» t I *■ T C <r ft k c k •k k- •k k
t C X K K *- X •^ ^ •- • • k- — t. X X c «. 1 i. t - c k bl «. o — 3 ■_ L k L L I ** L t. «. c » c 1 *J i/ L c c * ■ c k (.Ox c ex c f r « c C X c c c c C

«l C C. M fcj fc^ C *- ^ C H •-• t-i <- X c OC a 3 C c C ■ Vl o — in c c *. .— X It — ul —i m o w u i. i
k ■■ * ■i it •— c ■

T 1 T X ■ w 2 x ft It

5
c 1 c L c C [«.a

C T a. = ^ •» i. i. c

| CM c *- L «. c c X ■ \ I ^ --» C — 5 X X « c c w X tr c

c
U c c 3 t '^ c c l- t c t it c _ «. — C t c U U
c N c c m w : O it >- *fl • C • - X It It It It it u i« *l •» c J x c It - ft n . if] VI t

t W 1 t c. K ■ 1A t X >• «i i c X i a - WX w • • X C - k i. *J •— w C t k k ^ > ft ft I
X g| — c •- «. w < * 1« - C U X X ./■ iA W M »- *» t(l— Kl c 9 ft- c c « y «1 — - c M r x X It

«■
« c > m c ^-« k 1 ft 1. ^
t M c 1 <* J I. > c —

i
t. X c fc- c f

J 1 It
X

•-* It

t " IC M Ml Jg k M
». o C i M ^ u 1 - J t. 1

iA I r . •^ c 1 ^^ x If c * c c X

X ■-• >* :" a v r c H - c u bi

c
•- t *-> t 5 I ■

C
3 r 1

t £ ■ - I :

I

■

J

1
M -• -
1
J

C
c M

I
■
i | ^

1^ — i

1 ^ k C c
H b k. .-■ ;• ^ ^ x t

k IT k- 1 i

k _ — «t jr M
t. c « t X k« v

•< . . - z * v t.
t 4_ k t k * - r— *-

C
ki D

If I
X
k- X

C > - Ä

^ c c c c

* k ~- K I t c -k- *•> c » C k ** — k k L — L t ~. »-
2 t 3 — »■ • K X T 4- t X

5 k o — C k. i ki 1 e > i

c ■ c « K t * X C •
S k- k > 4-1 •- L K • t —

^ « (t 3 k r C i *- k k J.
k c C C C t X > C 1 t c 1

> C (. v >■ c c l >. <., tft - ^* _ u

« i w » t k k k c k r>* c 1 i ' f.

c
c k C

T
i » It c. c

C 1
« « c

i"1

•■

■~ *"' m •^
% C v » »^ £ c n 1 X k tfl . ^ w ^ w «--
c

c c T k *J
o »r > c T

k
it

* c
e ^ c «*

■
c

> k 1 t k t w L. - c w k c — t % c t
e ». rf- C * C 1 m~ 1 s k u •. c X ^
L k I X > a X t. t »— X «0 c 1 c « L C

«. w c ^ H *k _ c X fci c •-' > fr- ^
•- «* \ c *- P«

*■ k k • - X T (. « t 1 I ■ ■ c c 1 < -1 5 c C «. It » c w c c c
t t r C N ?. t til

X

t r. f X k k«
I
n

t 1

"
ft.

|

%. %.

VI l 1 • c ^ ^ 1 f x
t* ^ « * 1 c * *- • C t l- ^

tf) */> ^i ■-

>.
1 •* C c «~ i L

yi 1 a 1 — C I, <. v- L C c <r •- «
c W ^ w pt C c 1 2 "j c C * * * *

> *- > > * 1 FH A % c k P 4 • L c ■ - M k . • «
- r c J X T \ c C T T i« X c i k X X c X c «-I kf c c ■ i

K- | 1 | c G t t 11 k Jj 1 ^ C k « •— c — — — w •— C- c
3 t « a T T N ** c MEt mt «. r- , 1 c N •^ * id 1/ 1/ • w c c

D~ « C t ._ «-* > - IX ♦ *J 1 3 X r — ~ M s c c
^ ^ J c c

Wfs > t^ ^ ^ „ i o ^ 1 c 1 - X t I n k X a I X c — — t, — ^ c -- t — m o -- *~
b 3 X « 3 c T, t c ^ c o c It C fc. c t t-' «. % — h <- it C O It c 1 X * It C * 1 1
c «• « <« »* (t k > — k c n t It k k k c X r *^ «. • ■ k t > k (> w • «J a ^ • > C ^ S *-'

* C k. It- C 1 c u b C T J c ^ k — — D 3 k M ■M *^ w ^ k (- 3 k I w o k r-i 1 k i • T C K

c t C c c c C > c C • c C X C C x C C c. Bv C C ■ X (C 1 c c c ■ r< «. ♦ « c c 4 % t %
■ C w c c c c o ^ <J ■ ^ n M c - m m if 3 tl M — 1 i c L ■ c i *^ t-< ** c u v^ C X c C »-■

~2.
0. r«

\ t —*
C L

t. c

H ID
crcn
U L c t c: L c c c .. c c it c CSICM

I .
K g r c E v B tt

c It >- 9 IT « ^ i^ c It It T It it It C it It k i ^ I« ■ »> C N •^ 1 i-. it it n it c c c K L ^ w kl- a - t
T — i c k k h. c t - — M X w C T c — k k ♦J X c I C ' w X ki X * X t *-J X X »r C 1 X C k.

k -ET T « a. tl w «1 <k «1 ^ C- t— c c ^ <C n u »-• X — a - Ifl ^ M •- r vi •■ HI Ol T */i 4-< fc^

c c —• •-• •>

k> I

t- r

•o
c

n.

e

c

>
c

l>

>
a

■
c

c

«I c

■ t •» c
- » « c
- c » •

C l. _ >

C K , » .
* I If »
3 * c h. k.
t 4 - ~
» t <l <» »

_ ■ 0.
a t 1
i. e r u. c
t 1
c ■ n "

v. x —
• o c «• ~ ie 1

:
X 1 c l-

x i L
M C 3 3
C K c u *- N W

It x « c u C
b f - « w •• 0 k

1 I
C. s ^ c t
c. •- k
u r

1 •-•
1 t I

4

— C —
C <•

«. VI
X • c c
* « (I i

fM k «^
fc» — *<
c c m
w « X c o c

C ICC
M 3

♦ * c
> O J. c

la.
w _*•
i I

L 4 *- K K
C X — c <c
C f X C tl

I X
X u
C K

— c ■
« c
a v

k c I
JC k-

» X
" c
c c
— k c

— X
— a
•> ti x

« c *-
'- c
a. C
> tl k>

If :
^ E •

C
c

•-• a
K ^

J x1
C a

•■' X
t c

K , K
»■ tl

c Z c

x .c
U w

•■ •- */l Irt
C VI t tl
C k T T
c

a I
X «
0
m m
B k
H •-
a J i

I
H- UJ 3
C.- -

o
tl > (.
u >
> k vi
x « —

c x
kl t k>

tl C X

': If
t- S
V. C
3 U t

c
t ki C
I •« X

— t
u c «
^ a t
- - i. i
a n a t
C *-< VI X

VI ^
3 r-.
C —

> •
> tl
K k u.
* c ^H

I
»- C vi
- k ^
X « —

X
tl "
c —
c »- -

tl n
4 IT,
C <• 3

— «k k
»- c x
k kl
I« t

V, k- c
— t

• x > u1
3 «si t

"- •- >
C it

L.
•1 «t C
K X i
t i • *

3 u.
C -

X •
3 «»

i C-
c
a

>•
a

J c
c

c ~

*
X

I
c

> c
t a
- G

VI

c k-c
t ^-

C k ,
t -
3 — •- «•
C

a

■ X
L
C «
E

*- w

t,'Cc t
3 X C I« X

=- X C £ • 3 C
■ii« .— 3 r- x —
K ^ o L — r , v t.
*IX c , K f —. u K

O "-i tl t c 1 M tl

c x c
■IC K t C K
KK Q— X KC —
««ttvinjll
tltl Llki>- tlCIki

I

c -
C 3
-. t

a C
ti x

it.-.
w K

I •
C k
c c

k l^i ^ >,
3 x . i

c l «c ^
K k k
. a. c c c

c c«- x —

• c
a a
C

a > -
tx
- it c

-c pi
t

k* — VI

X ft j

■ I x
t k k
t t-

c i.
c
k.». ,

>« t
0 t c
k C 1 k ».

m —
»^ • •

ü i
I«

C VI
C ft

ft (

X
c
It c
«"^ C XX

t K KK_ K » _ viil
XIC<C« |i«X«lt.tl
Ct.tl«ic«ilCUXX
T 0

3^ ;. 3
•J*1 = f VI" O X f
>«>«Xk KW.L
• * * C • * «u. C

•"•i». c^.*-if-4>--ic
y
c

CM ^ c

«KC—X K KQ-
t t E f i it ft: f f
titiCwectltiOk'

I
a.
X
c

mm^m^^i^r^m^^m — . ■ . .,...._

1

g

ir.

OJ
b.

it
C

c

I
X
c
L
Q

1
c
3

g
8
E
s

g
I
u
0

c

s
TO

>

1^

in
a
C

-r

c

C
a.

> —

M
c

c
C.

c
«*

«. ^

S 1
V. I/I

i. (/) I/)
C «c a

>. >T: x
0 — c c

— TO
C 4J c c

I-
c

«

3

c

c

c
c

c
c

M
a
>

CM tr, ^r c r^ t-i r^ •£>

3
T
o

t.
c
u

X
c

u
c

<

k.

u TO

0^ —
M
TO
U

c
X

C

TO
w ft)

TO
TO 1/)

C
]

■I

0! "
k. a;
I-

t-t X
»- TO
C 'M t. tL

-t- I
in c

C

u k.
TO TO TO

b; t t. t.
u w w k.
TO TO TO TO

c

K
C

c

il

J.

c

>♦-
c
c
u

«
T

C «^ t-.t-11-t rii-if-'
X >^^"^^^.^^^.

C^ Ci C' O" ff Ol C Ci

U .-n-H^HtHr-lr-ir-l«-!
C >^ «SV. ^ -V. ^ ^^ »N. »>.

> CT-CTCTiCTCrClC. Ci

0, «v. ^, v^ ^ ^ ^ ^. "^
> ccoaccco^c

v, C ^. "•».--^ ^ ^s. ■>■. ^. ^. •«J
CO CTCCTiOClC^tnO" c

C K1 4-<0. ^.^.^^^^"^^^ |
— » ^-ft. ci c o- in ci ci o". O"' <u

\j % TZ ,-if-Hr-tt-ir-<i-tt-ti-t«t
ft, ^ "^ "^ ^ »^ ^« ^. *>« ^^ ^
ui | e o c- c c o- o- c c

i x * * * % "" %_:*~ ft, ft ,_, i-< rH f-H rH i-(il t-H ^-
b. T -^ »>» >^-v»-v, •vv »^ «^ ^^

C >N C ^H rn pH ^ rH rH t-H t-l —
•— ft/ K >v. ^» "«^ «^ "«^ ^.-^ ^. »-
f— jkTft) CM vc— r^r^ooinesir-«^

3
t
C
:.

b.
C

k.
<L

X
c

c

c

a;

ftl 3

S V
TO C

c

tn

u-
c
C
u

c. •• c
a t . - i- i. a-
m > in i^ *J c >
rs ft; a. -^ O T ft)

XXTXXTXT—X
unu^uuuu CC

.1 ir.
- ±
M IT
<T »C

S 2| 1
1 T

c l_
n n

MM

^^»

1

a
t
K
c

L.
C

X
c

hT. f^ H~ C. C I-H f-H r. f; 1^1 K-. r-< f-t CJ C-»

CCCCCCCCCCCCCCC
cere cc c ccc cc cc-cicn

cc ccccccccccccc
CCIOüIOIC ccrcrocrc cene

i-Hr>~r-4r^i—ir^f-ir^r-tr^i—it*-»-<r^ p*

CCCCC CCCCCCCCCC
cc ccc CCCCC c cccc

O-*— MM CNCSiCVipiltlCOOJ -3
i^ J US ||% IG LTiwir tcmcc i i. u. L, 16
K r^ K' — c ifi ^- u, c r-- K". tr. i—' u. CM

CCCCCCCCCCCCCCC
cc ccc c cccccrc ccc

c.= JJJC, tv.esc^ii.ioc c~ —
r^ r>- rri j c IT I-IU. r. r»- r^ "" •-•»£. CJ

CCCCCCCCCCCCCCC L
o-c cc cccc cccc c> cc —

C.~Ä"=— ^-CPC-li-CCC^^ •
CMmtMK\CviK'(V.fAC. (OCMfACNfTiCM »—
r ^ r-- - — i- u u u r r i. L/ , u. u. C
•v.-v, >^-v. ^. -^ ^^-"^ ■>« ^^ ^^ ^ ^^ ^» -^ C
CCCCCCCCCCCCCCC —
ccccc cccrccc cccc •

t-(r-r-tt^f-<f*-iHr^.r-r«.r-irv-i-it^t-t x

CCCCCCCCCCCCCCC I
CCCCCCCCCCCCCCC c
«%*«%««**%«**«« c

C— j-^j^fc. cvir. c^u,^cco^^•-^• •—
ctncu-cinciTiCifiCtncii'. c w
r^hor^c-a-rnir, r4u;K-r^«-Hir>CN.u, D
^.-^ ^v "^s-^ "V. ^ ^ ^ ^, ^» '«^ ^ -*« ^ •«
CCCCCCCCCCCCCCC c
CCCCCCCCCCCCCCC c

u

t.
c

a.
X
c

u

XTXT"CXXXTTXTTT T.

>>>>>>>>>>>>>>>
c

-I
<_

c
-
u

■■ ■ — ■■■ ■-■

An Enciphering Module for Multics page 62

APPENDIX D - INTRODUCTION TO MULTICS ASSEMBLER

This section is intondod to be a quick introduction to

the Honeywell model 6180 procesjor for those who are

unfamiliar with its macnine language.

The 6180 is a word-addressed machine with a 36-bit

word; it also possesses some very powerful bit string and

character string handling instructions. There are two major

arithmetic registers of 36 bits each, the accumulator (A)

and the quotient (Q) registers. These may be coupled to

form a double length register, the AQ. Initructions ending

in A, Q, or AQ operate on the corresponding realsters.

There are in addition eight index registers of eiohteen

bits each. Instructions ending in xN where N is an octal

digit operate on these registers. Most index register

instructions take a storage operand in the top half of a

word, except for sxlN (store xN in lower half) and IxlN

(load index N from lower half),

There exist eight pointer registers for generatinn

segment number - word number pairs. These registers contain

a character offset and a bit offset from the addressed word

for the use of character string and bit string instructions.

The names of these registers (in numeric address order) are

ap, ab, bp, bb. If), lb, sp and oh. The ap points to a

procedure's argument list. The lp points to the procedure's

linkage section where internal static variables are kept.

MM

■■■I >w

An Enciphering Module for Multics page 6 3

such as the key. The sp points at the stack frame, in which

automatic variables are kept. Variables declared in a

"temp" or "tempd" pseudoop are placed in the stack frame by

the assembler and are given one or two words each

respectively. A temp variable may also be qiven a subscript

in which case it will be assigned that many words.

Declaration in a temp or tenpd implies an sp reference. The

other pointer registers are used for spare registers; for

example, the bp points at the input string and the bb points

at the output string.

A sample instruction would be

Idq Ipjfoo

This instruction will load the Q register with the internal

•static (because of the lp reference) variable foo.

adq 15*8,dl

will add 12ü to the- Q register. The dl address modifier

causes the address field to act like a memory operand,

padded on the left with zeroes. The du modifier pads on the

right with zeroes.

The following stranqe-looking multiword instructions

are the special character string and bit string

instructions; this en«? performs boolean operations on bit

strings. Mere a simple move is indicated.

cs?. (pJ^ql) , (pr.al) ,fill (0) ,bool (move)

descb bp|0,8

descb convolution,9

mtkm

An Enciphering Module for Multics paqe 64

will move eight bits from the address bp|0+nl to a 9-bit

field (padding with a zero bit) at convolution (plus

implicit sp reference) + al. The offset modifiers ql and al

refer to the bottom of the Q and A.

mvt (pr),(pr)

desc9a confused_bytes,8

desc9a confused_bytes,8

arg confusion_table+3-*,ic

will translate, the eight 9-bit bytes at confuscd_bytes

(first argument) according to the table at confusion_table

(third argument) and deposit the resultant eight 9-bit bytes

in confuscd_bytes (second argument). The lookup is done by

treating each character as an index into the table.

A list of most of the instructions used in Lucifer and

their meaning follows.

ada, q, XxN

an? q, xN

anaq

arg

cmpa, q, xu

csl

descb

add to A, Q, xN

and to A, Q, xN

and to AQ (two wores)

zero opcode (used for mvt table and

constants)

compare A, Q, xN

combine bit strings left (three

word instruction)

a pseudoop which generates a bit

string descriptor for a csl

An Enciphering Module for Multics pige 65

dQSc9a

eaa, X;J

oppN

era, q, aq, xN

ersa, ersq

Ida, (7, aq

llr

11s

Irl

IxlN

mir

mv t

ora, q, aq

orsa, q

qls

sba, q, xN

s ta, q , aq

stxN

stz

tmi

tnz

tpl

instruction.

generates a 9-bit character descriptor

effective address to A (top half), xN

effective pointer to pointer

register N

exclusive or A, Q, AQ, xIJ

exclusive or A, Q to storage

load A, Q, AQ

long (AQ) left rotate

long (AQ) left shift

lonq (AQ) right logical shift

load xN from lower half

move character string left to righ-

(three word instruction)

move with translation

(four word instruction)

OR A, Q, AQ

OR A, Q to storage

Q left shift

jubtract A, Q, xN

store A, Q, AQ

store xN

store zero

Lrsnsfer on minus

transfer or r.ot Tiero

transfer on plus (including zero)

UMM

"^ """"■"
mmtmi * m i

An Enciphering ftodule for Multics page 66

tra

ttf

unconditional transfer

transfer tally-runout flag off

Address modifiers appear after a comma in an address

field. For example

Idq bp|0,x2

causes indexing by x2.

XN

*

*xN or *N

xN* or N*

index by index register N

indirect

indirect then index (i.e., add

index register to address in

indirect word).

index then indirect

As well as xN index modification, the following can be

used whenever xu appears above:

au top of A

al bottom of A

qu top of Q

ql bottom of Q

ic instruction counter

du direct to upper

dl direct to lower

—mm

An Enciphering Module for Multics paqe 67

The indirect and tally modifiers add-delta (AD) and

subtract-delta (SD) take an indirect word. Add-delta

causes, after the instruction is executed on the operand

pointed to by the address field (bits 0 - 17; the operand

lies in the sane segment as the AD word), the delta

(rightmost six bits) to be added to the address field. The

tally (bits 18 to 29) is decremented by one. If the tally

reaches zero the tally-runout indicator is set, but no fault

occurs. Subtract-delta, before executing the instruction,

subtracts the delta from the address field and increments

the tally by one.

An tncipherincj Module for Multics paqe 68

bIBLIOCRAPHY

1. Girdansky, K. B. "Cryptoloqy, The Computer, and Data
Privacy," Computers and Automation, April, 1972, pp. 12-19.

2. Smith, J. L., 'The Design of Lucifer, a Crypt'-jraphic
Device for Data Communications," IBM Research Report RC
3326, Apiil 15, 1071.

3, Honeywell Information Systems, Inc. Honeywell
Processor Manual.

645

Related material:

4. Smith, J. L., Uotz, W. A., and Osseck, P. R., "An
Experimental Application of Cryptography to a Remotely
Accessed Data System," IBM Research Report RC 3508, August
18, 1971. (Also Proc ACM 25th Nat Conf., August, 1972, pp.
282-297.)

5. Feistel, H., "Cryptographic Coding for Databank Privacy,"
IBM Research Report RC 2827, March 18, 1970.

6. Feistel, H., Notz, W. A., and Smith, J. L.,
"Cryptographic Techniques for Machine to Machine Data
Communications," IBM Research Report RC 366 3, December 27,
1971.

mm

